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Abstract

In this paper, we study a mirror duality on a generalized complex torus and
a noncommutative complex torus. First, we derive a symplectic version of
Riemann conditions using mirror duality on ordinary complex tori. Based on
this, we will find a mirror correspondence on generalized complex tori and
generalize the mirror duality on complex tori to the case of noncommutative
complex tori.

PACS numbers: 02.40.Gh, 02.40.Ky

1. Introduction

In this paper, we study mirror dualities on complex tori, generalized complex tori and
noncommutative complex tori.

Based on string theory, it was proposed in [33] that mirror pairs of Calabi–Yau manifolds
admit special Lagrangian torus fibrations over the same base such that generic fibers are dual
tori. The mirror duality over elliptic curves is well established in [29], and Kontesivich’s
homological mirror symmetry conjecture was first proved in that paper. This is generalized to
the Abelian varieties, and in the case of Abelian varieties there is a precise definition of mirror
duality which agrees with the suggestion of [33] via dual torus fibratons, see [9, 27, 34].
Also, mirror symmetry on symplectic and complex tori or on Abelian varieties has been
studied in many papers such as in [11, 24, 25]. Based on the construction given in [9, 27],
we explicitly analyze the relations between Lagrangian submanifolds and the holomorphic
line bundles. From this, we derive a symplectic version of Riemann conditions and also
find the mirror relation between a complexified symplectic form and a period matrix for the
dual lattice. Furthermore, we find a condition for submanifolds of a symplectic torus, which
corresponds to a non-holomorphic line bundle on the mirror dual complex torus.

The notion of generalized complex geometry, which was introduced by Hitchin in
[14, 15], contains as special cases both complex and symplectic manifolds. It has been studied
in [14] that in topological strings on a Calabi–Yau manifold, A-branes, B-branes and other
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corresponding notions discussed in [19] are well explained in terms of generalized complex
submanifolds. In [18], Kapustin and Orlov studied the notion of an N = 2 superconformal
vertex algebra and found a criterion for two different complex tori to produce isomorphic
N = 2 superconformal vertex algebras which correspond to mirror duality. In [17], it
was discussed that the geometry of topological D-branes is best described using generalized
complex structures. In particular, the role of a B-field and the relation between T-duality and
an N = 2 superconformal structure are well explained in [17]. Here, we note that a rigorous
mathematical formulation of the same in a formal setting was established in [2]. Based on
the result in [17] and the analysis made on Abelian varieties, we generalize the mirror duality
on complex and symplectic tori to the generalized complex tori. We shall consider a special
type of generalized complex torus and define a mirror map between generalized complex tori.
Using this mirror map, we verify the mirror correspondence on Abelian varieties. Also, we
will discuss the case when a given B-field is not of type (1,1). One may find some related
discussions in [1, 4, 12].

The noncommutative tori is known to be the most accessible examples of noncommutative
geometry developed by Connes [5]. It also provides the best example in applications of
noncommutative geometry to string/M theory, which was initiated in [6]. Analogously, the
geometry and gauge theories of a noncommutative torus have been explicitly studied in many
papers, such as [6, 7, 30, 31]. A complex geometry of noncommutative torus was developed
by Schwarz in [32], and it can be considered as a noncommutative generalization of Abelian
varieties. It also provided a basic step to the study of Kontsevich’s homological mirror
conjecture [23]. In [16, 26, 28], it has been shown that the conjecture is true for the case
of two-dimensional noncommutative tori. Based on the D-brane physics given in [16], we
discussed the mathematical aspects of the T-duality on a noncommutative complex torus in
[20]. We generalize the mirror correspondence to the higher dimensional cases. Also, we
discuss the noncommutative version of Riemann conditions.

2. Mirror duality for Abelian varieties

In this section, we briefly review the mirror symmetry on Abelian varieties following [9], [27].
We shall find a necessary and sufficient condition that the mirror dual torus of a symplectic
torus becomes an Abelian variety.

Let Td = Cg/(Z ⊕ iZ)g, d = 2g, be a complex torus equipped with a complexified
symplectic 2-form � = ω + iξ . Let V ∼= Rd be the universal cover of Td and let
� = π1(T

d)∼= Zd . Also, we assume that there is an �-Lagrangian linear subspace L of V

such that L ∩ � ∼= Zg , and we can take L = iRg ⊂ Cg . Let us consider the Lagrangian
torus fibration p : V/� −→ V/(L + �) which admits a section and, hence, we have
an isotropic decomposition V = V/L ⊕ L such that � = (�/� ∩ L) ⊕ (� ∩ L). Let
e1, . . . , eg, eg+1, . . . , ed be a basis for the real vector space V = V/L ⊕ L, respectively,
such that �(ei, ej ) = �(eg+i , eg+j ) = 0 and �(eg+i , ej ) = Zij for some g × g complex
matrix Z = (Zij ). By the definition of �, we may write Z = ReZ + iImZ , where
ω(eg+i , ej ) = (ReZ)ij and ξ(eg+i , ej ) = (ImZ)ij . The symplectic form ω is positive
so that it is nondegenerate. Note that the matrix Z can be understood as a linear map
from V/L to L∗. In other words, we define, using the same notation, Z : V/L −→ L∗

by Z(v) = �(·, v), v ∈ V/L. Similarly, we have linear maps ReZ and ImZ such
that ReZ(v) = ω(·, v) and ImZ(v) = ξ(·, v) for v ∈ V/L. Since the matrix ReZ is
nondegenerate, the linear map ReZ : V/L −→ L∗ is an isomorphism.
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Following the lines of [27] and [9], we construct the mirror dual of (Td ,�). Note that
the natural map

α : V ⊕ V ∗ −→ HomR(V , C)

defined by α(v, v∗)(x) = �(x, v) + iv∗(x), x ∈ V , is an isomorphism of real vector spaces,
where V ∗ = HomR(V , R) is the dual vector space of V . There exists a unique complex
structure on V ⊕ V ∗ induced by the isomorphism α. Let L⊥ = {v∗ ∈ V ∗|v∗(l) =
0 for all l ∈ L}. Then α maps the subspace L ⊕ L⊥ ⊂ V ⊕ V ∗ to the subspace
HomR(V/L, C) ⊂ HomR(V , C). Passing to the quotient spaces, we get an isomorphism

αL : V/L ⊕ L∗ −→ HomR(L, C) = L∗ ⊗R C,

where L∗ = HomR(L, R). Indeed, αL is given as follows:

αL(v + L, l∗)(x) = �(x, v) + il∗(x) = �(x, v) + iω(x, y),

where we have used the isomorphism ω : V/L −→ L∗ defined by ω(y) = ω(·, y). Let us put

(� ∩ L)⊥ = {μ ∈ L∗ | μ(γ ) ∈ Z for all γ ∈ � ∩ L}.
Then the mirror of (Td ,�) is defined to be

(Td ,�)∨ = W/	,

where

W = (V/L) ⊕ L∗, 	 = (�/� ∩ L) ⊕ (� ∩ L)⊥.

A complex structure on (Td ,�)∨ is defined uniquely by the isomorphism αL. More explicitly,
we define a complex structure Ĵ� on V/L⊕V/L which makes the following diagram commute:

V/L ⊕ V/L
αL−−−−→ HomR(L, C) = L∗ ⊗R C

| |
Ĵ �| |·i↓ ↓

V/L ⊕ V/L
αL−−−−→ HomR(L, C) = L∗ ⊗R C

Hence,

Ĵ� =
(

ReZ 0
ImZ ReZ

)−1 (
0 −1
1 0

)(
ReZ 0
ImZ ReZ

)
=

(
(ReZ)−1 0

−(ReZ)−1ImZ(ReZ)−1 (ReZ)−1

) (
0 −1
1 0

)(
ReZ 0
ImZ ReZ

)
=

( −(ReZ)−1ImZ −1
1 + (ReZ)−1ImZ(ReZ)−1ImZ (ReZ)−1ImZ

)
. (1)

For simplicity, let A = (ReZ)−1ImZ . Then we have

Ĵ� =
( −A −1

1 + A2 A

)
. (2)

In fact, as a linear map, A : V/L −→ V/L is defined by the condition

ω(·, Av) = ξ(·, v), v ∈ V/L.

Let f : V/L −→ L be an R-linear isomorphism such that f (�/� ∩ L) = � ∩ L and
let Lf = {f (v) + v|v ∈ V/L} be the graph of f , which is a linear subspace of V . Since
f (�/� ∩ L) = � ∩ L, the image Lf of Lf under the projection V −→ V/� intersects

3
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each fiber of p : V/� −→ V/(L + �) in finitely many points. For the basis e1, . . . , ed of
V = V/L ⊕ L, let f (ej ) = ∑g

k=1 fkj eg+k . Since

�(f (ej ) + ej , f (ei) + ei) = �(f (ej ), ei) + �(ej , f (ei))

= �

(∑
k

fkj eg+k, ei

)
− �

(∑
k

fkieg+k, ej

)
=

∑
k

{fkjZki − fkiZkj }

= (Z t f )ij − (Z t f )ji ,

the graph Lf of f is an �-Lagrangian subspace of V if and only if Z t f : V/L −→ (V/L)∗

is symmetric. Analogously, we have the following relations:

(ReZ)tf = f t (ReZ), (ImZ)tf = f t (ImZ). (3)

Associated with the linear map f : V/L −→ L, we define an antisymmetric bilinear
form Ef on (�/� ∩L)⊕ (� ∩L)⊥ as follows. For u1, u2 ∈ �/� ∩L and v∗

1 , v
∗
2 ∈ (� ∩L)⊥,

Ef ((u1, v
∗
1), (u2, v

∗
2)) = v∗

2(f (u1)) − v∗
1(f (u2)).

We extend Ef to an R-bilinear anti-symmetric form on V/L ⊕ L∗. Using the identification
ReZ : V/L∼= L∗, we consider the bilinear form Ef as the one on V/L ⊕ V/L. Then the
bilinear form can be represented by

Ef =
(

0 f t (ReZ)

−(ReZ)tf 0

)
.

We now show that the graph Lf of f is an �-Lagrangian subspace of V if and only if the
bilinear form Ef satisfies Ef (Ĵ�v, Ĵ�w) = Ef (v,w), for v,w ∈ V/L. Suppose that Lf is
�-Lagrangian, then relations (3) hold. By the definition of Ĵ� given in (2), we have( −A −1

1 + A2 A

)t (
0 f t (ReZ)

−(ReZ)tf 0

) ( −A −1
1 + A2 A

)
:=

(
X Y

−Y t W

)
,

where

X = −At f t (ReZ)(1 + A2) + (1 + A2t )(ReZ)tf A (4)

Y = −At f t (ReZ)A + (1 + A2t )(ReZ)tf (5)

W = −f t (ReZ)A + At (ReZ)tf. (6)

Since A = (ReZ)−1ImZ and by (3), we have

W = −f t (ReZ)A + At (ReZ)tf = −f t ImZ + (ImZ)tf = 0. (7)

By (3) and (7), we have

X = −At f t (ReZ)(1 + A2) + (1 + A2t )(ReZ)tf A

= −At (ReZ)tf (1 + A2) + (1 + A2t )f t (ReZ)A

= −At (ReZ)tf A2 + A2t f t (ReZ)A

= −At ((ReZ)tf A + At f t (ReZ))A = 0.

Using (7) again, we have

Y = −At f t (ReZ)A + (1 + A2t )(ReZ)tf

= −At f t (ReZ)A + A2t (ReZ)tf + (ReZ)tf

= −At f t (ReZ)A + At f t (ReZ)A + (ReZ)tf

= (ReZ)tf.
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Thus, by (3), (
X Y

−Y t W

)
=

(
0 f t (ReZ)

−(ReZ)tf 0

)
(8)

as desired. Conversely, suppose Ef (Ĵ�v, Ĵ�w) = Ef (v,w), then (8) is true, and we show
that relations (3) are also true. Since W = 0 and by (7), we have f t ImZ = ImZ t f .
Also, f t ImZ = ImZ t f implies that Y = (ReZ)tf . Thus, by relation (8), we should have
f t (ReZ) = (ReZ)tf . Now, the graph Lf is an �-Lagrangian subspace of V .

Finally, we shall show how to find an �-Lagrangian submanifold of Td from a holomorphic

line bundle over (T̂
d
,�). This will allow us to compare the �-Lagrangian property given in

(3) with the Riemann conditions (cf [13]). Also, as we will see in the following section, the
argument given here is easily applied to the case of the noncommutative tori.

A holomorphic line bundle on T̂
d

is specified by its first Chern class which can be
represented by an anti-symmetric bilinear form on 	. Let Ef be any integral anti-symmetric
bilinear form on W = V/L⊕L∗. Without loss of generality, we may assume that Ef is given

by the matrix
(

0 f t

−f 0

)
for the basis given above. Note that we also regard f as a linear map

from V/L to L. Associated with such a matrix Ef , one can find a complex g × g matrix Z
such that the g × d matrix (Z f t ) is a period matrix over the lattice 	. Now, the 2-form Ef

on T̂
d

is of type (1, 1) if and only if

(Z f t )

(
0 −f −1

f −t 0

) (
Zt

f

)
= 0,

which implies that Z = Zt . From the period matrix, we can reconstruct the complex structure
Ĵ� in the same basis. Note that the complex structure given in (2) is defined on V/L ⊕ V/L

using the identification ReZ : V/L∼= L∗. Thus, we must consider the period matrix using the
basis for V/L⊕V/L and this is done using ReZ . Now, in order to find the complex structure
Ĵ�, we need to solve the matrix system

(Z f t )Ĵ� = i(Z f t )

or equivalently(
Re Z f tReZ
Im Z 0

)
Ĵ� =

(−Im Z 0
Re Z f tReZ

)
.

For simplicity, we let f = f t · ReZ . If we consider the matrix f is regarded as the linear
map f : V/L −→ L, the f is regarded as the linear map from V/L to (V/L)∗, using the
identification ReZ : V/L∼= L∗. Now, we have

Ĵ� =
(

Re Z f tReZ
Im Z 0

)−1 (−Im Z 0
Re Z f t · ReZ

)
=

(
0 (Im Z)−1

f−1 −f−1Re Z(Im Z)−1

)(−Im Z 0
Re Z f t · ReZ

)
=

(
(Im Z)−1Re Z (Im Z)−1f

−f−1[Im Z + Re Z(Im Z)−1Re Z] −f−1Re Z(Im Z)−1f

)
(9)

Formula (9) is also given in [25]. By comparing (9) and (2), we get the following consistency
relations:

A = −(Im Z)−1Re Z = −f−1Re Z(Im Z)−1f (10)

1 = −(Im Z)−1f (11)

5
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1 + A2 = −f−1[Im Z + Re Z(Im Z)−1Re Z]. (12)

It is easy to check that the conditions (11) and (12) are equivalent. By (11), we have

f = −Im Z (13)

and also by (10) and (13)

fA = −f(Im Z)−1Re Z = −Re Z(Im Z)−1f = Re Z.

Thus, we see that if Z = Zt , then f and fA are symmetric. Similarly, if Z = Z
t
, then f is

skew-symmetric and fA is symmetric.
Conversely, suppose that f and fA are symmetric. Then by (13), Im Z is symmetric. From

(10) and (11), we have fA = −f(Im Z)−1Re Z = Re Z. Thus, if fA is symmetric, then Re Z

is symmetric, which implies that Z = Zt . Also, we see that Im Z > 0 if and only if f < 0,
by (11). Thus, we see that the Riemann conditions on the complex side are the mirror dual to
the �-Lagrangian property given in (3). On the other hand, if f is skew-symmetric and fA is
symmetric, then we have Z = Z

t
. Thus, in this case, we see that a non-holomorphic bundle

on the mirror dual torus corresponds to a submanifold of the original torus, which is defined
to be the graph of a skew-symmetric linear map after the identification with ReZ : V/L∼= L∗.

In particular, an interesting fact is that the correspondence between complexified
symplectic form on Td and the complex structure on the mirror dual torus is easily seen
by the relations

f = f tReZ = −Im Z, fA := f t ImZ = Re Z (14)

and, hence,

f tZ = f t · ReZ + if t · ImZ
= −Im Z + iRe Z

= i(Re Z + iIm Z) = iZ.

As a conclusion, the mirror dual complex torus (T̂
d
, Ĵ�), equipped with the integral 2-

form Ef , is an Abelian variety if and only if the real matrices f, fA are symmetric and f < 0.
This might be understood as a symplectic version of the Riemann condition. Also, for a

holomorphic line bundle L̂ on T̂
d

such that c1(L̂) ∈ H 1,1(T̂
d
, R) ∩ H 2(T̂

d
, Z), we may write

c1(L̂) as an integral bilinear form Ef = (
0 f t

−f 0

)
on W = V/L ⊕ L∗. Then the graph of the

integral linear map f : V/L → L is an �-Lagrangian subspace of V . This analysis will be
generalized to the case of noncommutative complex tori in the following section.

3. Mirror duality on generalized complex tori

The aim of this section is to rephrase the mirror duality given in section 2 in terms of generalized
complex structures which were introduced by Hitchin ([15] and see also [14]). Modifying
the notion ‘T-duality in all direction’ defined by Kapustin in [17], we define T-duality in half
direction, and we will show that the duality is well matched with the mirror symmetry given
in section 2.

Let us first recall the definition of a generalized complex structure on a real vector space.
Let V be a d-dimensional vector space over R. Then the space V ⊕ V ∗ is naturally equipped
with a pseudo-Euclidean metric defined by

〈X + v∗, Y + w∗〉 = 1

2
(v∗(Y ) + w∗(X)) = 1

2
(Xv∗)

(
0 1
1 0

) (
Y

w∗

)
, (15)

6
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for X, Y ∈ V and v∗, w∗ ∈ V ∗. For simplicity, we write q = (
0 1
1 0

)
as the pseudo-Euclidean

metric given in (15). A generalized complex structure on V is an endomorphism J of V ⊕V ∗

satisfyingJ 2 = −1 andJJ t = −1, i.e., J is orthogonal with respect to the pseudo-Euclidean
metric. This orthogonality can be seen as the following commuting diagram:

V ∗ ⊕ V
J t

−−−−→ V ∗ ⊕ V

| |
q| q|↓ ↓

V ⊕ V ∗ −J−−−−→ V ⊕ V ∗

A generalized complex torus (Td ,J1,J2) is a real torus Td = V/� equipped with a pair
(J1,J2) of generalized complex structures on the direct sum of the tangent and cotangent
bundles making it a fiberwise generalized complex vector space. In particular, such a pair
of generalized complex structures is called a generalized Kähler structure on Td . A typical
example is given as follows. Let J ∈ End(V ) be a complex structure on Td = V/� endowed
with a constant Kähler form ω with a B-field ξ , and with a flat Riemannian metric g. Then,
we have two generalized complex structures:

JJ =
(

J 0
0 −J t

)
, Jω =

(
0 −ω−1

ω 0

)
,

and we may transform them by a B-field ξ :

J ξ

J =
(

1 0
ξ 1

)(
J 0
0 −J t

) (
1 0

−ξ 1

)
=

(
J 0

ξJ + J tξ −J t

)
J ξ

ω =
(

1 0
ξ 1

)(
0 −ω−1

ω 0

)(
1 0

−ξ 1

)
=

(
ω−1ξ −ω−1

ω + ξω−1ξ −ξω−1

)
.

It is easy to check that
(
Td ,J ξ

J ,J ξ
ω

)
is a generalized complex torus. Now, such two

generalized complex tori
(
Td

1 ,J
ξ1
J1

,J ξ1
ω1

)
and

(
Td

2 ,J
ξ2
J2

,J ξ2
ω2

)
are mirror of each other if

there is a lattice isomorphism φ : �1 ⊕ �∗
1 −→ �2 ⊕ �∗

2 such that φtq2φ = q1 and

φ−1J ξ1
J1

φ = J ξ2
ω2

, φ−1J ξ1
ω1

φ = J ξ2
J2

, where qi = (
0 1
1 0

)
, i = 1, 2, are the pseudo-Euclidean

metric.
We now rephrase the mirror duality given in section 2 in terms of generalized Kähler

structure by constructing an explicit mirror map φ and the map will be referred as a T-
duality in half direction since it corresponds to a relative T-duality along the fibers of a
special Lagrangian fibration, (compare with [17]). Let T2g = V/� = Cg/(Z ⊕ iZ) be a
complex torus equipped with a complexfied symplectic form � = ω + iξ . Then the mirror of
(T2g = V/�,�) is given by W/	, where W = (V/L)⊕L∗ and 	 = (�/� ∩L)⊕ (� ∩L)⊥

by decomposing � = (�/� ∩ L) ⊕ (� ∩ L). We define

φ =

⎛⎜⎜⎝
−1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0

⎞⎟⎟⎠ : � ⊕ �∗ −→ 	 ⊕ 	∗. (16)

We shall verify the map φ gives the mirror correspondence discussed in section 2. Note that
we have a generalized Kähler structure on T2g = V/� is given by

J ξ

J =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠ (17)

7
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J ξ
ω =

(
ω−1ξ −ω−1

ω + ξω−1ξ −ξω−1

)
. (18)

Equation (17) follows from the fact that ξ is a type of (1, 1) with respect to the canonical

complex structure J = (
0 −1
1 0

)
. Using the notation given in section 2, the entries in (18) are

given as follows:

ω−1ξ =
(

(ReZ)−1ImZ 0
0 (ReZ)−t ImZ t

)
−ω−1 =

(
0 −(ReZ)−1

(ReZ)−t 0

)
ω + ξω−1ξ =

(
0 −ReZ t − ImZ t (ReZ)−t ImZ t

ReZ + ImZ(ReZ)−1ImZ 0

)
− ξω−1 =

(−ImZ t (ReZ)−t 0
0 −ImZ(ReZ)−1

)
.

Then it is easy to compute

φ−1J ξ

J φ =

⎛⎜⎜⎝
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞⎟⎟⎠
and

φ−1J ξ
ω φ = −

(
Ĵ� 0
0 −Ĵ t

�

)
,

where Ĵ� is the complex structure on the mirror dual torus given in section 2.
Using the mirror map defined above, we may consider the case that the complex 2-form

� = ω + iξ is not of type (1,1). Since we have ξ as a B-field, we shall keep ω as of type
(1,1). With the same basis e1, . . . , eg, eg+1, . . . , ed for the vector space V given in section 2,
we define a complexified symplectic form � as follows: �(ei, ej ) = √−1Xij ,�(eg+i , ej ) =
Zij , �(eg+i , eg+j ) = 0, where Xij is real. Then we may represent ξ as a block matrix

ξ = (
X −ImZ t

ImZ 0

)
. In other words, we only have common ω and ξ -Lagrangian subspaces on

the base space of the Lagrangian torus fibrations considered in section 2. One finds that ξ is

no more of type (1, 1). To be more precise, we have a canonical complex structure
(

0 −1
1 0

)
and

consider the following general form:(
0 1

−1 0

)(
X −ImZ t

−ImZ Y

)(
0 −1
1 0

)
=

(
Y −ImZ

ImZ t X

)
.

From the relation above, we see that the 2-form, which is represented by the matrix(
X −Im Z t

−Im Z Y

)
is of type (1, 1) if and only if X = Y and the matrix ImZ is symmetric.

Also, ξ is of type (2, 0) or (0, 2) if and only if X = −Y and ImZ is anti-symmetric. Then
since

ξ =
(

X −ImZ t

ImZ 0

)
=

(
X
2

Im Z−Im Z t

2
Im Z−Im Z t

2 −X
2

)
+

(
X
2 − Im Z+Im Z t

2
Im Z+Im Z t

2
X
2

)
,

we see that the ξ is a most general type of B-field. Now the generalized Kähler structure is
given by

J ξ

J =
(

J 0
ξJ + J tξ −J t

)
(19)

8
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J ξ
ω =

(
ω−1ξ −ω−1

ω + ξω−1ξ −ξω−1

)
(20)

and

ω−1ξ =
(

(ReZ)−1ImZ 0
−(ReZ)−tX (ReZ)−t ImZ t

)
− ω−1 =

(
0 −(ReZ)−1

(ReZ)−t 0

)
ω + ξω−1ξ =

(
(ImZ)t (ReZ)−tX + X(ReZ)−1ImZ −ReZ t − ImZ t (ReZ)−t ImZ t

ReZ + ImZ(ReZ)−1ImZ 0

)
−ξω−1 =

(−ImZ t (ReZ)−t −X(ReZ)−1

0 −ImZ(ReZ)−1

)
.

For the complex structure (19), since

ξJ + J tξ =
(

X −ImZ t

ImZ 0

)(
0 −1
1 0

)
+

(
0 1

−1 0

) (
X −ImZ t

ImZ 0

)
=

(
ImZ − ImZ t −X

−X ImZ t − ImZ

)
,

we have

J ξ

J =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0

ImZ − ImZ t −X 0 −1
−X ImZ t − ImZ 1 0

⎞⎟⎟⎠ .

By applying the mirror map, we get

φ−1J ξ

J φ =

⎛⎜⎜⎝
0 0 0 1
X 0 −1 ImZ t − ImZ

ImZ − ImZ t 1 0 X

−1 0 0 0

⎞⎟⎟⎠ .

Similarly, we have

φ−1J ξ
ω φ =

(
A B

C D

)
,

where

A =
(

(ReZ)−1ImZ (ReZ)−1

−ReZ − ImZ(ReZ)−1ImZ −ImZ(ReZ)−1

)
B =

(
0 0
0 0

)
C =

(
(ImZ)t (ReZ)−tX + X(ReZ)−1ImZ X(ReZ)−1

(ReZ)tX 0

)
D =

(−ImZ t (ReZ)−t ReZ t + ImZ t (ReZ)−t ImZ t

−(ReZ)−t (ReZ)−t ImZ t

)
.

Finally, we note that the B-field ξ is mapped to φξφ−1 under the mirror map φ and we get the
above correspondence.

Note that the generalized Kähler structureJ ξ

J given in (19) is block-lower triangular. Thus,
if we take ‘T-duality in all directions’ as defined in [17], the corresponding generalized Kähler
structure on the dual torus becomes a block-upper triangular. However, this is impossible
unless the B-field ξ is of type (1,1) related to an N = 2 superconformal field theory. Hence

9
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if the (0,2)-part of ξ is not 0, then the T-duality has a problem. Analogously, since T-duality
between a complex torus and its dual torus makes the categories of B-branes on both tori
equivalent, the category of B-branes should be twisted by the (0,2)-part of ξ . From this,
Kapustin proposed that such a twistedness is characterized by the fact that the matrix J ξ

J is
block-lower-triangular, see [17] for details.

We have chosen a specific type of B-field which has a nonzero (0,2)-part, and it defines a
twistedness on a B-brane category on the complex torus as discussed above. On the other hand,
from our choice of the B-field ξ , we find that the A-brane category on T2g should be deformed
by the (0,2)-part of ξ , since the generalized Kähler structure J ξ

ω given in (20) is block-lower-
triangular after taking a T-duality in half directions as shown in the above computations.
As a conclusion, we state a symplectic version of Kapustin’s proposal: noncommutative
deformations are characterized by the fact that the mirror dual of a symplectic type of the
generalized Kähler structure such as the one given in (20), is block-lower-triangular, and the
A-brane category is twisted by the (0,2)-part of the given B-field.

4. Mirror duality on noncommutative complex tori

In this section, we generalize the mirror duality on Abelian varieties to the case of
noncommutative complex tori. Let us first recall some basic facts for a noncommutative
complex torus and holomorphic structures on it, see [32] for details. A noncommutative torus

T̂
d

θ is generated by d-unitaries U1, . . . , Ud

UiUj = exp(2π iθij )UjUi, (21)

where θ = (θij ) is an irrational d × d skew-symmetric matrix. The relation (21) defines the
presentation of the involutive algebra

Ad
θ =

⎧⎨⎩ ∑
(n1,...,nd )∈Zd

an1,...,nd
U

n1
1 · · · Und

d

∣∣∣∣an1,...,nd
∈ S(Zd)

⎫⎬⎭ ,

where the coefficient function (n1, . . . , nd) �→ an1,...,nd
rapidly decays at infinity. By definition,

the algebra Ad
θ is the algebra of smooth functions on T̂

d

θ . The ordinary torus T̂
d

acts on the

algebra Ad
θ (cf [30]), and the infinitesimal form of the action of T̂

d
on Ad

θ defines a Lie algebra
homomorphism

δ : W −→ Der
(
Ad

θ

)
, (22)

where W is a real vector space which is the Lie algebra of T̂
d = W/	, for some lattice 	,

and Der
(
Ad

θ

)
denotes the Lie algebra of derivations of Ad

θ . Generators δ1, . . . , δd of Der
(
Ad

θ

)
act as follows:

δj (Uj ) = 2π iUj and δi(Uj ) = 0 for i �= j.

A noncommutative torus T̂
d

θ is said to be a noncommutative complex torus if the Lie
algebra W ∼= Rd is equipped with a complex structure. Associated with a given complex
structure on W , the complexification W ⊗R C can be decomposed by two complex conjugate
subspaces W 0,1 and W 1,0, which are of a complex dimension g such that 2g = d. Let

�0,p = ∧p(W 0,1)∗ and �0,• =
g⊕

p=0

�0,p.

10
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A holomorphic structure on a vector bundle E over T̂
d

θ , which corresponds to a finitely
generated projective (left) Aθ -module, is given by a linear map

∇ : E ⊗ �0,• −→ E ⊗ �0,•+1

such that, for α, β ∈ W 0,1,

∇α(u · e) = u · ∇αe + δ̄α(u) · e, u ∈ Aθ, e ∈ E (23)

and

[∇α,∇β] = 0, (24)

where δ̄1, . . . , δ̄g are generators for the Lie algebra Der
(
Ad

θ

)
associated with a basis for W 0,1.

From the condition (24), we get a complex

0 −−−−→ E
∇−−−−→ E ⊗ (W 0,1)∗

∇−−−−→ E ⊗ ∧2(W 0,1)∗ −−−−→ · · · ,
and the corresponding cohomology will be denoted by H ∗(E,∇). Note that, since
dimCW 0,1 = g,Hk(E,∇) = 0 if k > g. In particular, H 0(E,∇) consists of φ ∈ E such
that ∇φ = 0. The elements of H 0(E,∇) are called holomorphic vectors or theta vectors.

The vector bundles over T̂
d

are classified by the K-theory of T̂
d
, and there is a ring

homomorphism ch : K∗(T̂
d
) −→ H ∗(T̂

d
, Q). Similarly, finitely generated projective Ad

θ -

modules are classified by K0
(
Ad

θ

)
, and the Chern character takes values in H ∗(T̂

d
, R). The

targets of the both Chern characters are related to the deformation parameter θ ∈ ∧2W . The
relation is summarized by the following diagram:

K0(T̂
d
)

ch−−−−→ H even(T̂
d
, Q)

|
ei(θ)|↓

K0
(
Ad

θ

) Ch−−−−→ H even(T̂
d
, R)

where i(θ) denotes the contraction with 2-vector θ and ei(θ) is defined using the usual power
series with the exterior product as done in [8]. More precisely, for a finitely generated
projective Ad

θ -module E , the Chern character is defined to be

Ch(E) =
∑
k=0

1

k!
t̂r(F k) · 1

(2π i)k
, (25)

where F is the curvature of a connection ∇ on E and t̂r is the trace on the algebra EndAd
θ
(E).

Then by [theorem 4.5] [30], one can construct a finitely generated projective Ad
θ -module E

and a connection ∇ on it such that

Ch(E) = ei(θ)ch(E). (26)

Note that the cohomology group H •(T̂
d
, R) can be identified with the exterior algebra ∧•W ∗,

where W ∗ = HomR(W, R) is the dual vector space of W . In below, we shall study the mirror
dual property of the cohomological deformation described above.

Let f : V/L −→ L be an integral linear map and let Lf = {f (v) + v|v ∈ V/L} be the
graph of f . Since f is integral, Lf ∩ � ∼= Zg and Lf = Lf /(Lf ∩ �) intersects each fiber of
p : V/� −→ V/(L + �) at one point. As we have discussed in section 2, the linear subspace

Lf defines an integral antisymmetric bilinear form Ef = (
0 f t

−f 0

)
on W = V/L ⊕ L∗. Then

the linear subspace Lf of V is an �-Lagrangian, if and only if Ef can be seen as an element

in H 1,1(T̂
d
, C) ∩ H 2(T̂

d
, Z). Then there is a holomorphic line bundle L̂f on T̂

d
such that

11
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c1(L̂f ) = Ef . Let us denote the intersection number of Lagrangians Lf and L in V/� by
#(Lf ∩ L). Since #(Lf ∩ L) = 1, it is easy to see that

Pf Ef = #(Lf ∩ L′),

where Pf Ef is the Pfaffian of the anti-symmetric form Ef and L′ is the image of V/L under
the covering map V −→ V/�. Note that the moduli space of the flat Lagrangian submanifolds
of Td parallel to Lf /Lf ∩ � is identified with the d-dimensional torus.

Based on the construction given in [30], we shall deform the line bundle L̂m on T̂
d

to a

holomorphic bundle over the noncommutative torus T̂
d

θ . A finitely generated projective Ad
θ -

module, which is in fact a bundle over T̂
d

θ , is given by a Schwarz space S(Rg ×G), where G is a
finite Abelian group. Let G = ∏g

i=1 Zmi
and let E = S(Rg ×G), where m1m2 · · · mg = Pf Ef

corresponds to the degree of the line bundle L̂f . Using the representation of the Heisenberg
commutation relations for the finite group G, one can find unitary operators Wi acting on
S(G) = Cm1 ⊗ · · · ⊗ Cmg such that

WiWj = exp
[
2π i

(
E−1

f

)
ij

]
WjWi. (27)

The operators Wj can also be obtained using the twist eating solution studied in [10], and
such operators specify the line bundle L̂f . In order to define an Ad

θ -module action on
E = S(Rg × G), one needs to consider an embedding of the lattice 	 into Rg × (Rg)∗ in
the sense of [30]. Such an embedding map can be given by a real invertible d × d matrix T,
satisfying the relation

T

(
0 1

−1 0

)
T t = γ, (28)

where γ is an irrational skew-symmetric matrix such that E−1
f − γ = θ . Let us denote the

first and the second g rows in the j th column of the matrix T by T[1,j ] and T[2,j ], respectively.
Then associated with the embedding T, we define operators Vj on S(Rg) by

(Vjh)(s) = exp(2π ist · T[2,j ])h(s + T t
[1,j ]), (29)

where s = (s1 · · · sg)
t ∈ Rg and h ∈ S(Rg). Then the operators satisfy the following

commutation relation:

ViVj = exp(−2π iγij )VjVi. (30)

Combining (27) and (30), the unitary operators Ui = Vi ⊗Wi define an Ad
θ -module action on E .

Thus, we get a vector bundle E on the noncommutative torus T̂
d

θ . Similarly, one can construct
a constant curvature connection ∇ on E using the inverse matrix T −1. More explicitly, define

(∇jh)(s) = 2π ist · T −1
[1,j ]h(s) − ∂h

∂s
· T −1

[2,j ], (31)

where ∂h
∂s

= (
∂h
∂s1

· · · ∂h
∂sg

)
. Then we have

[∇i ,∇j ] = 2π i(γ −1)ij . (32)

Note that the operators of the form ∇i + Ri, Ri ∈ R also satisfy the commutation relation (32),
and thus the moduli space of such connections is a d-dimensional torus.

Let us consider the case when the curvature γ −1 is given by the following simple block
matrix:

γ −1 =
(

0 F t
γ −1

−Fγ −1 0

)
and γ =

(
0 −Fγ

F t
γ 0

)
, (33)

12
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where Fγ is a g×g real matrix such that at least one of its entries is irrational and Fγ −1 = F−1
γ .

Note that the matrix Fγ depends on the choice of a basis for W . Associated with the curvature
γ −1 as given above, we define an antisymmetric bilinear form Eγ −1 on W = V/L ⊕ L∗ as
follows. For v1, v2 ∈ V/L and l∗1 , l∗2 ∈ L∗,

Eγ −1((v1, l
∗
1 ), (v2, l

∗
2 )) = l∗2 (fγ −1(v1)) − l∗1 (fγ −1(v2)), (34)

where fγ −1 : V/L −→ L is a linear map whose matrix is given by Fγ −1 with respect
to the given basis for W . Thus, the curvature γ −1 is the corresponding matrix for the
antisymmetric form Eγ −1 on W . Also, we may regard the antisymmetric form Eγ −1

on W as an element of the cohomology group H 2(T̂
d
, R) in the following way. Since

Ch(E) = ei(θ)ch(L̂f ) ∈ H 2•(T̂
d
, R), we may write

Ch(E) = Ch0(E) + Ch1(E) + · · · ∈ H 0(T̂
d
, R) ⊕ H 2(T̂

d
, R) ⊕ · · · .

The curvature Eγ −1 of ∇ is given by 2π iCh1(E)/Ch0(E), and the 0th cohomology is computed
to be

Ch0(E) = dim(E) = det T = Pf(γ ).

The first cohomology class is now given by Ch1(E) = dim(E)Eγ −1 ∈ H 2(T̂
d
, R) = ∧2W ∗.

Thus, the curvature Eγ −1 , which is normalized by the dimension of E , can be understood as
an anti-symmetric form on W = V/L ⊕ L∗ representing Ch1(E).

Recall that the vector space W is equipped with the complex structure Ĵ�, which is defined
in section 2. The linear map Ĵ� is defined on V/L⊕V/L and by identifying V/L with L∗ via

ReZ , it defines a complex structure on W . Now by definition,
(
T̂

d

θ , Ĵ�

)
is a noncommutative

complex torus. We shall define a holomorphic structure on the vector bundle E on T̂
d

θ , which
is compatible with the complex structure Ĵ�. Let W ⊗R C = W 1,0 ⊕ W 0,1, where W 1,0 and
W 0,1 are i and −i eigenspaces of Ĵ�, respectively. Associated with the integral anti-symmetric
bilinear form Ef , which is the first Chern class of the line bundle L̂f , one has a period matrix
of 	 ⊂ W , as discussed in section 2. Along with the deformation of the Chern character of
L̂f , we also deform the period matrix. More explicitly, since Ch1(E) ∈ ∧2W ∗, for the given
basis for W , we may write

Ch1(E) = 1

2

∑
i<j

Pf(γ )
(
F t

γ −1

)
ij

dxi ∧ dxj ,

where x1, . . . , xd are the dual coordinates on W . Then the period matrix of 	 ⊂ W is
deformed to �γ = (

F t
γ Z

)
, where Z is a complex g × g matrix. By this period-like matrix, we

make the change of the basis for W into the one for W 0,1. Thus, we let

δ̄ = �γ δ or δ̄a =
d∑

j=1

(�γ )aj δj .

According to the basis change, we define a holomorphic connection ∇ on E by ∇ = �γ ∇.
Then

[∇,∇] = [�γ ∇, �γ ∇]
= �γ γ −1�t

γ

= (
F t

γ Z
) (

0 F t
γ −1

−Fγ −1 0

) (
Fγ

Zt

)
= −Z + Zt .

13
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Thus, [∇,∇] = 0 if and only if Z = Zt . In other words, the connection ∇ defines a
holomorphic structure on E if and only if Z is symmetric. We note that a holomorphic
structure on E corresponds to a real 2-form which is of type (1,1), as we will see in below.
Also, we may define a structure which corresponds to a real 2-form, which is of type (2,0)
or (0,2). Using the holomorphic connection ∇, we define a structure of type (2,0) or (0,2) as
[∇,∇] = 0, and it is easy to see that Z = Z

t
if [∇,∇] = 0.

Associated with the holomorphic structure ∇ on E , we may recover the compatible

complex structure Ĵ� on T̂
d

θ , which is inherited from that of T̂
d
. First, note that the derivations

are a noncommutative generalization of derivatives ∂
∂x

. On the other hand, the complex
structure Ĵ� in section 2 is represented by using differential forms. Thus, in order to get a

matrix form for Ĵ� on T̂
d

θ , we need to take the dual period-like matrix �∗, and the relation
between � and �∗ is given as follows:(

�∗

�
∗
)

=
(

F t
γ Z

F t
γ Z

)−t

= 1

2i

(−Im Z−t 0
0 Im Z−t

)(
Z

t
Fγ

Zt Fγ

)(
Fγ −1 0

0 −Fγ −1

)
.

Thus, by a simple change of basis, we may set �∗ = (ZFγ ) and as in section 2, we solve the
matrix equation

(ZFγ )Ĵ� = i(ZFγ ).

Using the identification ReZ : V/L∼= L∗, as in section 2, we have

(ZFγ · ReZ)Ĵ� = i(ZFγ · ReZ)

and, hence,

Ĵ� =
( −(Im Z)−1Re Z −(Im Z)−1Fγ

F−1
γ [Im Z + Re Z(Im Z)−1Re Z] F−1

γ Re Z(Im Z)−1Fγ

)
, (35)

where Fγ = Fγ · ReZ . Also, by relations (2) and (35), we get

A = −(Im Z)−1Re Z = F−1
γ Re Z(Im Z)−1Ft

γ .

Furthermore, since Z is symmetric, we have the same relations as in (14):

Fγ · ReZ = Im Z and Fγ · ImZ = Re Z.

Now by the same analysis given in section 2, the matrix Z is symmetric if and only if the
graph of the linear map fγ −1 : V/L −→ L is an ω-Lagrangian subspace of V . Equivalently,
the graph is a Lagrangian subspace of V if and only if the connection ∇ defines a compatible

connection on E on the noncommutative complex torus
(
T̂

d

θ , Ĵ�

)
. Also, we see that the

antisymmetric bilinear form Eγ −1 , defined above, satisfies the relation

Eγ −1(Ĵ�v, Ĵ�w) = Eγ −1(v,w), v,w ∈ W. (36)

From relation (36), we find that the graph Lγ −1 = {fγ −1(v) + v|v ∈ V/L} of the linear
isomorphism fγ −1 : V/L −→ L corresponds to the real 2-form Eγ −1 of type (1,1), and
this implies that the linear Lagrangian subspace Lγ −1 of V is associated with a holomorphic

structure on T̂
d

θ via mirror duality. However, Lγ ∩ � is not isomorphic to Zg . In other words,
the image Lγ −1 + � of Lγ −1 under the covering map V −→ V/� is not compact and is
isomorphic to Rg in Td .

Let us consider the case when the curvature γ −1 is of the most general form. Since γ −1

is skew-symmetric, there is an orthogonal matrix O such that

Oγ −1Ot =
(

0 �γ −1

−�γ −1 0

)
,

14



J. Phys. A: Math. Theor. 42 (2009) 015206 E Kim and H Kim

where �γ −1 is a real g × g diagonal matrix. Let �O = (
�−1

γ −1 Z
) · O and let ∇ = �O∇. Then

we have
[∇,∇] = [�O∇, �O∇]

= �Oγ −1�t
O

= (
�−1

γ −1 Z
) · Oγ −1Ot

(
�−1

γ −1

Zt

)

= (
�−1

γ −1 Z
) (

0 �γ −1

−�γ −1 0

)(
�−1

γ −1

Zt

)
.

Thus, ∇ defines a holomorphic structure on E if and only if Z = Zt . In this case, associated

with the matrix
( 0 �γ−1

−�γ−1 0

)
, we have the Lagrangian subspace L� of V , which is defined

to be the graph of the linear map �γ −1 : V/L −→ L. Thus, the corresponding Lagrangian
subspace of V for γ −1 is given by the rotation of L� by the orthogonal transformation O.

Finally, we shall find holomorphic vectors for the vector bundle E over T̂
d

θ . Recall
that the holomorphic vectors are elements of H 0(E,∇), the kernel of the linear map
∇ : E −→ E ⊗ (W 0,1)∗. Using the Euclidean metric for W ∼= Rd , we may assume that
the curvature matrix γ −1 is of the form given in (33). Then a compatible holomorphic

structure on E is specified by ∇ = �γ ∇, where �γ = (
F t

γ

Z

)
as given above. By the definition

of ∇ given in (31), we have, for φ ∈ E and s = (s1 · · · sg)
t ∈ Rg ,

⎛⎜⎜⎝
∇1φ(s)

·
·

∇gφ(s)

⎞⎟⎟⎠ = (
F t

γ Z
)
⎛⎜⎜⎜⎜⎜⎜⎜⎝

∇1φ(s)

·
·
·
·

∇dφ(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= (

F t
γ Z

)
T −t

( −(
∂φ

∂s

)t

2π isφ(s)

)
,

where ∂φ

∂s
= (

∂φ

∂s1
· · · ∂φ

∂sg

)
. Thus, if ∇φ(s) = 0, then we get a system of the first-order linear

partial differential equations:

2π i
(
ZT −t

[22] + F t
γ T −t

[12]

) · s − (
ZT −t

[21] + F t
γ T −t

[11]

) ·
(

∂φ

∂s

)t

= 0, (37)

where T −t
[ij ] denotes the g × g matrix, which constitutes the (i, j) block of T −t . Then the

solution for system (37) is

φ(s) = exp
[
π ist · (

ZT −t
[21] + F t

γ T −t
[11]

)−1(
ZT −t

[22] + F t
γ T −t

[12]

) · s
]
.

Note that the set MT of all embeddings T satisfying relation (28) is the moduli space of

finitely generated projective modules over T̂
d

θ , equipped with a constant curvature connection
∇ such that [∇,∇] = 2π iγ −1, and such a connection is defined in terms of T −t . Equivalently,
the space MT is in one-to-one correspondence with the moduli space of constant curvature
connections on E whose curvature is 2π iγ −1. Furthermore, if ∇0 is a connection on E such that
[∇0,∇0] = 2π iγ −1, then all other connections satisfying the curvature condition are given in
the form ∇ = ∇0 + r, where r ∈ Rd . Now, we shall define a connection ∇0 using the specific

embedding T = (
F t

γ 0
0 1

)
or T −t = (

F−t
γ 0
0 1

)
. Then the corresponding holomorphic structure is

given by ∇0 = �γ ∇0, and the holomorphic vector is

φ(s) = exp[π ist · Z · s].
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Note that such a holomorphic vector exists only if the complex matrix Z is symmetric, and thus
if the bundle does not admit a holomorphic structure then the holomorphic vector does not
exist. In general, for the connection ∇ = ∇0 + r, the holomorphic connection is analogously
defined and the holomorphic vector is computed to be

φ(s) = exp[π ist · Z · s + 2π is · �γ · r].

Thus, the solution φ is in the Schwarz space S(Rg) only when Im Z > 0.

5. Summary and prospects

In this paper, we have studied mirror duality on Abelian varieties, which has been well
established. By an explicit study of the known results, we could find an exact mirror
correspondence between complexfied symplectic form and the complex structure for the
mirror dual torus. Also, we have reinterpreted the Riemann conditions in terms of Lagrangian
submanifolds, and we were able to find a symplectic condition for non-holomorphic bundle
over the mirror dual torus. We found in section 4 that all the above-mentioned results are
naturally generalized to the case of holomorphic noncommutative complex torus. The result for
non-holomorphic bundle shed some lights to the study of non-holomorphic noncommutative
complex torus, and we will address this problem later [21]. Associated with this problem,
we described the mirror structure for a generalized complex torus with a canonical complex
structure in section 2. First, we rephrased the mirror duality on Abelian varieties in terms of
generalized complex structures in the case when the given B-field was of type (1,1). Also, we
discussed the case when the B-field was of a general type. This might be a first step for us
to go for studying Kontsevich’s homological mirror symmetry for Abelian varieties, equipped
with a general type of the B-field, as was indicated in [17]. We will study this problem too
later ([22]) with the categorical approach using the Lie algebroid structure as studied in [3].
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